Diffuse Optical Spectroscopy: Analysis of Biophotonics Signals

2013 Short Course in Computational Biophotonics
Albert Cerussi
Day 4/Lecture #2
Disclosures

- No financial conflicts to disclose
Learning Objectives

- **Control of optical pathlength \((s)\)**
 - Wavelength \((\lambda)\), Space \((\rho, z)\), Time \((t)\)/Frequency \((f)\)

- **Controlling path length enables optical property measurement**
 - Absorption Coefficient \((\mu_a)\)
 - Reduced Scattering Coefficient \((\mu_s')\)

- **Quantify molecular absorbers**
 - Use of models to optimize information
Why do we care about modeling light transport in tissues?

Some examples from this morning
Why Modeling Matters

- Optical property change from pressor drug
- Absorption and/or scattering?
- Brain and/or skull/skin?

Why Modeling Matters

- Long term R(λ) changes related to tumor pathology

- How do we know changes are true tumor metabolism?

Tissue Optical Index (TOI) = (HHb x H₂O)/lipid

Why Modeling Matters

• Clinical outcome tied to optical measurement (threshold)

• Can better modeling improve this?

M. Heringlake et al., Anesthesiology V 114 (2011).
Why Modeling Matters

ANCIENT SCRIPT ➔ MODERN SCRIPT

BIOPHYSICAL STRUCTURE & FUNCTION ➔ OPTICAL MEASUREMENTS
What then is our goal?
What is Our Goal?

Quantitative absorption/scattering NIR spectroscopy in turbid tissues

purely absorbing

with scatter

Beer-Lambert Law

$$\log\left(\frac{I_0}{I}\right) = \varepsilon c s$$

$\varepsilon = \text{molar extinction}$

$c = \text{absorber concentration}$

$s = \text{photon path length (or L)}$
What is Our Goal

Need to know & control photon path length (s)
To get accurate molecular concentrations and states...

Cerussi A, et al. J. Biomed Optics 10(5); 2005
The Key: Control Photon Pathlength

• Noted in the Previous lecture
 – Control of pathlength key to diffuse optical imaging and spectroscopy
Some Scales to Remember

<table>
<thead>
<tr>
<th></th>
<th>SCATTERING</th>
<th>ABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE</td>
<td>$l_{sc} \sim 30 , \mu m$</td>
<td>$l_{abs} \sim 100 , mm$</td>
</tr>
<tr>
<td>TIME</td>
<td>$\tau_{sc} \sim 0.1 , ps$</td>
<td>$\tau_{abs} \sim 0.2 , ns$</td>
</tr>
</tbody>
</table>
• Diffuse Optical Spectroscopy for deep tissue
 – Depths > 5mm

• Clinical Examples (non-invasive)
 – Brain
 – Breast Tumors
 – Muscle
Models to consider …

- Transport theory
- Analytic (e.g., diffusion)
- Numerical (NIRFAST, COMSOL)
- Monte Carlo (VP, MCML)
CW Intensity Characteristics
CW Light Distribution

"HOMOGENEOUS" TISSUE

\[I_0 \]

\[
\mu_a = 0.01 \text{ mm}^{-1} \\
\mu_s' = 1.0 \text{ mm}^{-1}
\]
CW Light Distribution

Diffusion Theory (INF)

\[\Phi(\mu_a, \mu_s', r) \sim \frac{1}{4\pi Dr} e^{-r\mu_{eff}} \]

\[D = \frac{1}{3(\mu_a + \mu_s')} \]
Optical Diffusion Coefficient (mm)

\[\mu_{eff} = \sqrt{3\mu_a(\mu_a + \mu_s')} \]
Effective Attenuation Coefficient (mm⁻¹)

\[\delta = \sqrt{\frac{D}{\mu_a}} \]
Optical Penetration Depth (mm)
CW Light Distribution

\[R(\rho) \]

\[\mu_a = 0.01 \text{ mm}^{-1} \]

\[\mu_s' = 1.0 \text{ mm}^{-1} \]

https://virtualphotonics.codeplex.com/releases
CW Light Distribution

https://virtualphotonics.codeplex.com/releases
CW Light Distribution

https://virtualphotonics.codeplex.com/releases

LASER MICROBEAM AND MEDICAL PROGRAM
BECKMAN LASER INSTITUTE • UCIRVINE

NIH
Question:

• What wavelengths should we use for deep tissue penetration?
Modeling Light Penetration

- Consider homogeneous “brain-like” media:

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>μₐ (mm⁻¹)</th>
<th>μₛ’ (mm⁻¹)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td>1.38</td>
<td>1.56</td>
<td>1.4</td>
</tr>
<tr>
<td>750</td>
<td>0.017</td>
<td>0.93</td>
<td>1.4</td>
</tr>
<tr>
<td>1200</td>
<td>0.25</td>
<td>.58</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Modeling Light Penetration

Fluence of ρ and $z \sim 450\text{nm}$

LOG Φ

z [mm]

ρ [mm]
Modeling Light Penetration

Fluence of ρ and z ~ 450nm

Fluence range: 10 mw in 10^{-5} atto-W to 10^{-2} zepto-W to 10 yocto-W.

LOG Φ scale: -60 to 0.

Parameters:
- ρ [mm]
- z [mm]
Modeling Light Penetration

Fluence of ρ and $z \sim 450\text{nm}$
Modeling Light Penetration

Fluence of ρ and $z \sim 750\text{nm}$

ρ [mm]
-20 0 20

z [mm]
-6 -4 -2 0 2 10 20 30

LOG Φ

-6 -4 -2 0
Modeling Light Penetration

Fluence of ρ and $z \sim 1200\text{nm}$
Modeling Broadband Light Penetration

Question:

• How much will different NIR wavelengths penetrate tissues?
Modeling Broadband Light Penetration

Optical Penetration Depth from Diffusion theory:

$$\delta = \sqrt{\frac{D}{\mu_a}}$$

= 4.35 ± 0.68 mm
Modeling Broadband Light Penetration

Fluence of ρ and z @650 nm

<table>
<thead>
<tr>
<th>λ (nm)</th>
<th>δ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>3.5</td>
</tr>
<tr>
<td>700</td>
<td>4.97</td>
</tr>
<tr>
<td>750</td>
<td>4.76</td>
</tr>
<tr>
<td>800</td>
<td>4.99</td>
</tr>
<tr>
<td>850</td>
<td>4.56</td>
</tr>
<tr>
<td>900</td>
<td>4.3</td>
</tr>
<tr>
<td>950</td>
<td>3.37</td>
</tr>
<tr>
<td>1000</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Optical Property Recovery (CW)

Question:

• How can we use this information to recover the optical properties of the tissue?
Optical Property Recovery (CW)

Diffusion Theory (INF)

\[\Phi(\mu_a, \mu_s', r) \sim \frac{1}{4\pi D r} e^{-r \mu_{eff}} \]

\[D = \frac{1}{3(\mu_a + \mu_s')} \]

\[\mu_{eff} = \sqrt{3\mu_a(\mu_a + \mu_s')} \]
Optical Property Recovery (CW)

\[\mu_{eff} = 0.174 \text{ mm}^{-1} \]

\[\Phi(\mu_a, \mu'_s, r) \sim \frac{1}{4\pi Dr} e^{-r \mu_{eff}} \]

\[D = \frac{1}{3(\mu_a + \mu'_s)} \]

\[\mu_{eff} = \sqrt{3\mu_a(\mu_a + \mu'_s)} \]

Diffusion Theory (INF)

- \(\Phi(\mu_a, \mu'_s, r) \) is the radiative flux at a distance \(r \) from the source.
- \(D \) is the diffusion coefficient.
- \(\mu_{eff} \) is the effective attenuation coefficient.

Laser Microbeam and Medical Program
Beckman Laser Institute • UC Irvine
NIH
Spatially-Resolved Not always applicable

SCATTER DOMINATED
Optical Property Recovery

Question:

- Can we improve measurement sensitivity to the tissue optical properties?
 - Want to separate absorption from scattering in thick tissues (>5mm)
Optical Property Measurement: Time Domain
Time Domain: How it Works

Narrow FWHM Pulse (ps): Hi repetition rate (MHz) broadens (ns)
Time Domain: How it Works

Real World:
Detector responses broaden

Convolution of IRF and Tissue Response
\[\phi(r,t) = cQ \frac{\exp[-r^2/(4cDt)]}{(4\pi cDt)^{3/2}} \exp(-\mu_a ct). \]

- Diffusion Theory (Inf Med)
Time Domain (Diffusion Theory)

\[
\rho = 20 \text{ mm} \\
\mu_a = 0.01 \text{ mm}^{-1} \\
\mu_s' = 1.0 \text{ mm}^{-1}
\]
Time Domain (Diffusion Theory)

\[\rho = 20 \text{ mm} \]
\[\mu_a = 0.01 \text{ mm}^{-1} \]
\[\mu_s' = 1.0 \text{ mm}^{-1} \]
Time Domain (Diffusion Theory)

\[L \approx 85 \text{ mm} \]
Time Domain (Diffusion Theory)
Question:

- My data never looks like that...
Time Domain Models: Monte Carlo

\[\rho = 20 \text{ mm} \]
\[\mu_a = 0.01 \text{ mm}^{-1} \]
\[\mu_s' = 1.0 \text{ mm}^{-1} \]

https://virtualphotonics.codeplex.com/releases/view/108048
Question:

- How can we exploit temporal dependence to measure optical properties?
Optical Property Measurement (TD)

Sample and discriminate short/long paths

$t_1 = 200 \text{ ps}$
$t_2 = 600 \text{ ps}$
$t_4 = 1400 \text{ ps}$
Optical Property Measurement (TD)

\[\rho = 20 \text{ mm} \]
Optical Property Measurement (TD)

\[\rho = 20 \text{ mm} \]
Shortcut: Theory of Moments

- I hate fitting ...
- Theory of moments
 - Analytical
 - Easy to include IRF

\[m_k = \langle t^k \rangle = \frac{\int_{-\infty}^{+\infty} t^k g(t) dt}{\int_{-\infty}^{+\infty} g(t) dt} \]

\[V = \langle t^2 \rangle - \langle t \rangle^2 \]

\[\mu_a = \frac{m_1^3}{2\nu V (m_1^2 + V)} \]

\[\mu_s' = \frac{2m_1 \nu (m_1^2 + V)}{3\rho^2 V} \]

Liebert et al., Appl Opt 42(28) 2003.
Question:

- How can we exploit temporal dependence to control penetration depth?
Time Domain: Time Gating

PATH LENGTH ~ 15 - 1387 mm

COUNTS (LOG)

TIME (ns)
Time Domain: Time Gating

Layered Phantom Measurement (830 nm)

ρ = 5 mm

Mainly Top Layer

Mainly Bottom Layer
Optical Property Measurement: Frequency Domain
Frequency-Domain Measurements

SOURCE

TISSUE

DETECTED

stuff happens

$\phi \sim \text{time}$

$M \sim \text{AC/DC}$
Frequency-Domain Measurements

Frequency Sweeps (50 to 500 MHz)
Calibration of IRF: No Convolution

Graphs:

- **Amplitude (au):**
 - Y-axis: \(10^{-3}\) to 7
 - X-axis: 50 to 500 MHz

- **Phase (Deg):**
 - Y-axis: \(10^{-7}\) to 10
 - X-axis: 0 to 500 MHz

Legend:

- **FREQUENCY (MHz):**
- **AMPLITUDE**
- **PHASE** (Deg)
• Time & Frequency Domain are Fourier equivalents
• Experimental considerations dictate choice
Frequency Domain Light Propagation (SI)

\[A_{si}(\rho, \omega) = \frac{S(\omega)}{4\pi vD} \sqrt{\xi^2 + \eta^2} \quad \text{Photon density amplitude} \]

\[\Theta_{si}(\rho, \omega) = k_{\text{imag}}(\omega) r_0 - \arctan \left(\frac{\eta}{\xi} \right) + \phi_0(\omega) \quad \text{Photon density phase} \]

where ...

\[\xi = \frac{1}{r_o} \exp[-k_{\text{real}}(\omega)r_0] - \cos[k_{\text{imag}}(\omega)(r_{0b} - r_0)] \frac{1}{r_{0b}} \exp[-k_{\text{real}}(\omega)r_{0b}] \]

\[\eta = \sin[k_{\text{imag}}(\omega)(r_{0b} - r_0)] \frac{1}{r_{0b}} \exp[-k_{\text{real}}(\omega)r_{0b}] \]

Frequency Domain: Diffusion Theory

\[\rho = 20 \text{ mm} \]
\[\mu_a = 0.01 \text{ mm}^{-1} \]
\[\mu_s' = 1.0 \text{ mm}^{-1} \]
Question:

- My data never looks like that ...
Frequency Domain Models: Monte Carlo

Graph 1: PHASE (deg) vs. FREQUENCY (GHz)
- 2M
- 10M
- 24M
- 50M

Graph 2: PHASE (deg) vs. FREQUENCY (GHz)
- 2M
- 10M
- 24M
- 50M
Optical Property Recovery

Question:

• Can we improve measurement sensitivity to the tissue optical properties?
 – Want to separate absorption from scattering in thick tissues (>5mm)
Frequency Domain: Evolution in f
Frequency Domain: Evolution in Rho

FDM MULTI-R PLOTS: LAMBDA = 850nm FREQ =204MHz

- PHASE (deg)
- DISTANCE (mm)

- LN(A) (au)
- DISTANCE (mm)

- ΔPHASE (deg.)
- DISTANCE (mm)

57.75 MHz
200 MHz

NIH
LASER MICROBEAM AND MEDICAL PROGRAM
BECKMAN LASER INSTITUTE • UCIrvine
Frequency Domain: Evolution in Rho

![Graphs showing FLUENCE (RHO = 0) with Z (mm) on the x-axis and FLUENCE (au) on the y-axis. The graphs display exponential decay curves with varying colors.]
Question:

- How can we exploit frequency dependence to measure optical properties?
Optical Property Measurement: Frequency Domain
Frequency Domain: Optical Properties

\[\rho = 20 \text{ mm} \]

\[MOD = \frac{AC(f)}{DC(f = 0)} \]
Frequency Domain: Optical Properties

\[\rho = 20 \text{ mm} \]

\[\text{MOD} = \frac{AC(f)}{DC(f = 0)} \]
Frequency Domain: Optical Properties

\[\rho = 20 \text{ mm} \]

\[MOD = \frac{AC(f)}{DC(f = 0)} \]
Frequency Domain: Multi R, Single S

\[\mu_a = \frac{2\pi f}{2\nu} \left(\frac{S_\varphi}{S_{AC}} - \frac{S_{AC}}{S_\varphi} \right) \]

\[\mu_s' = \frac{S_{AC}^2 - S_\varphi^2}{3\mu_a} \]

S. Fantini et al., Optical Engineering 34 (1996)
Optical Property Measurement: Imaging and Spectroscopy
Cant We all Just Get Along

• CW Spectroscopy:
 – Many wavelengths
 – Hard to quantify at depth with single ρ

• FD/TD Spectroscopy
 – Easy to quantify at depth with single ρ
 – Tougher for many wavelengths
Harmony of λ and f ...

- modulation
- 401 frequency sweep
- 50-500 MHz (~ 200 ms)

Graph:
- TIME (ns) on the x-axis
- INTENSITY on the y-axis
- 100 MHz
- ~ .5 ms
Harmony of λ and f ...
Harmony of λ and f ...

- modulation
- diffusion model
- global fit
Harmony of λ and f ...

- modulation
 - diffusion model
 - global fit
 - optical properties
Harmony of λ and f ...

- Modulation
- Diffusion model
- Absorption & scattering
Harmony of λ and f ...

modulation

diffusion model

absorption & scattering

power law

scattering = $SA \times \lambda^{-SP}$
Harmony of λ and f ...

- modulation
- diffusion model
- absorption & scattering
- broadband reflectance
Harmony of λ and f ...

- modulation
 - diffusion model
 - absorption & scattering
 - broadband reflectance
 - scale w FDPM

Graphs:
- Absorption vs. Wavelength
 - Wavelength (nm): 650, 700, 750, 800, 850, 900, 950, 1000
 - Absorption (nm$^{-1}$): 0.000, 0.003, 0.006, 0.009, 0.012

- Reflectance vs. Wavelength
 - Wavelength (nm): 650, 700, 750, 800, 850, 900, 950, 1000
 - Reflectance (a.u.): 2, 4, 6, 8, 10
modulation

diffusion model

absorption & scattering

broadband reflectance

scale w FDPM
Harmony of λ and f ...

modulation

diffusion model

absorption & scattering

broadband reflectance

FDPM

BROADBAND

FOUR COMPONENT FIT

ABSORPTION (mm⁻¹)

WAVELENGTH (nm)
Harmony of λ and f ...

modulation

- diffusion model
- absorption & scattering
- broadband reflectance

- chromophore fit

![Graph showing absorbance and wavelength relationship with points and line segments labeled FDPM, broadband, and four component fit.](image)
Harmony of λ and f ... and ρ

Two-layer phantom spectrum at different Source-Detector separations
Harmony of λ and f ... and ρ

A. Li et al, Applied Optics 46(21) 2007
Harmony of λ and $f \ldots$ and ρ

3D TUMOR PHANTOM (SINGLE λ)

RECONSTRUCTION WITH NIRFAST

2cm TARGET @ 11mm depth

http://www.dartmouth.edu/~nir/nirfast/

Learning Objectives

• **Control of optical pathlength** (s)
 - Wavelength (λ), Space (ρ, z), Time (t)/Frequency (f)

• **Controlling path length enables optical property measurement**
 - Absorption Coefficient (μ_a)
 - Reduced Scattering Coefficient (μ_s')

• **Quantify molecular absorbers**
 - Use of models to optimize information
Acknowledgements

NCRR P41 Laser Microbeam and Medical Program
NCI U54 Network for Translational Research
NCI Chao Family Comprehensive Cancer Center
Arnold and Mabel Beckman Foundation
NCI R01CA142989
American College of Radiology Imaging Networks (ACRIN)
AFOSR Military Photomedicine Program

http://www.bli.uci.edu

UNIVERSITY of CALIFORNIA • IRVINE