Emergency and Critical Care Pharmacology: Commonly Used Drugs

HAROLD DAVIS, BA, RVT, VTS (EEC), (ANESTH/ANALGESIA)

General Nursing Considerations

- Indications
- Medication dilution
- Administration
 - Constant rate infusions (CRI)
- Medication compatibility
 - The Kings Guide to Parenteral Admixtures
 (www.kingguide.com)
 - Handbook of Injectable Drugs
 - Knowledge of potential side effects or adverse reactions
 - Plumb’s Veterinary Drug Handbook
Constant Rate Infusions (CRI)

- Used in drugs that have rapid onset and short duration of action
- Reduces amount of drug used over time
- Avoids peaks and valleys

Quick CRI Formula #1

45 kg patient to receive 5 µg/kg/min dopamine CRI

\[
\text{BW}_{\text{kg}} \times \text{Dose (µg/kg/min)} = \text{mg drug qs to 250 ml of NaCl} \\
\text{Administer at 15 ml/hr}
\]

\[
45 \times 5 = 225 \text{ mg}
\]

5.6 ml of 40 mg/ml dopamine is placed in 244 ml NaCl and given at 15 ml/hr

CRI Formula # 2 (Mg Drug to Add to a Solution)

45 kg patient to receive 5 µg/kg/min dopamine CRI

\[
M = \frac{(D)(W)(V)}{(R)(16.67)}
\]

\[
M = \frac{(5)(45)(250)}{(15)(16.67)}
\]

\[
M = 56.250 / 250 = 225 \text{ mg}
\]
CRI Formula #2 (Change in Rate)

45 kg patient to receive 10 µg/kg/min dopamine CRI

\[R = \frac{(D \text{ adjusted})(W)(V)}{M}(16.67) \]

\[R = \frac{(10)(45)(250)}{225}(16.67) \]

\[R = 112.500 \div 3,750.75 \]

\[R = 30 \text{ mL/hr} \]

- \(M \) = milligrams of drug to add to base solution
- \(D \) = dosage of drug in mcg per kg per min
- \(D \text{ adjusted} \) = new dose rate of drug
- \(W \) = body weight in kg
- \(V \) = volume in ml of base solution
- \(R \) = fluid rate in mL/hr
- \(16.67 \) = conversion factor

Oxygen Therapy

- **Indications**
 - Hypoxemia
 - \(\text{PaO}_2 \) < 80 mmHg
 - \(\text{SpO}_2 \) < 95%
 - Respiratory distress
- **Objective**
 - Correct hypoxemia using the lowest possible \(\text{FIO}_2 \)
- **Administration techniques**
- **Pros**
- **Cons**
Oxygen Therapy

- Contraindications
- Potential complications
 - Diminished or lost the hypercapnic respiratory stimulus to breath
 - Oxygen toxicity
 - P:F > 100% - 24 – 72 hrs
 - P:F > 60% not more than 24 – 72 hrs.
 - Airway inflammation, increased tissue permeability resulting in pulmonary edema, and finally interstitial fibrosis and permanent lung damage

Crystalloids

- Composition
 - Sodium, chloride, potassium, magnesium or calcium, buffer
 - Sodium distribution
 - Sodium major solute in extracellular space, majority extracellular space is extravascular, therefore sodium will reside outside the vascular space

Classification
- Extracellular fluid (ECF) replacement (Isotonic)
- Maintenance (Hypotonic)
- Hypertonic
Electrolyte Composition of Fluids

<table>
<thead>
<tr>
<th>Solution</th>
<th>Na⁺ (mEq/L)</th>
<th>K⁺ (mEq/L)</th>
<th>Cl⁻ (mEq/L)</th>
<th>Ca²⁺ (mEq/L)</th>
<th>Mg²⁺ (mEq/L)</th>
<th>HCO₃⁻ (mEq/L)</th>
<th>Osmolarity (mOsm/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECF (Plasma)</td>
<td>145</td>
<td>4</td>
<td>110</td>
<td>5</td>
<td>3</td>
<td>24</td>
<td>290</td>
</tr>
<tr>
<td>Lactated Ringers</td>
<td>130</td>
<td>5</td>
<td>109</td>
<td>3</td>
<td>0</td>
<td>28</td>
<td>274</td>
</tr>
<tr>
<td>Hartmann’s</td>
<td>151</td>
<td>5</td>
<td>111</td>
<td>2</td>
<td>0</td>
<td>27</td>
<td>294</td>
</tr>
<tr>
<td>Normosol - R</td>
<td>140</td>
<td>5</td>
<td>98</td>
<td>0</td>
<td>3</td>
<td>27</td>
<td>294</td>
</tr>
<tr>
<td>Plasma 154</td>
<td>150</td>
<td>5</td>
<td>108</td>
<td>3</td>
<td>0</td>
<td>28</td>
<td>278</td>
</tr>
<tr>
<td>3% NaCl</td>
<td>126</td>
<td>0</td>
<td>154</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
<tr>
<td>5% NaCl</td>
<td>1283</td>
<td>0</td>
<td>1283</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2068</td>
</tr>
<tr>
<td>Normosol - R in 5% Dextrose</td>
<td>16</td>
<td>12</td>
<td>98</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>294</td>
</tr>
<tr>
<td>Plasma 58</td>
<td>16</td>
<td>13</td>
<td>92</td>
<td>0</td>
<td>3</td>
<td>16</td>
<td>311</td>
</tr>
<tr>
<td>3% Dextrose in 1/2 strength Lactated Ringers</td>
<td>80.5</td>
<td>3</td>
<td>58</td>
<td>1.6</td>
<td>0</td>
<td>16</td>
<td>292</td>
</tr>
</tbody>
</table>

Colloids

- Large molecular weight solutions
- Colloid fluids contain a suspension of particles that exert an oncotic pressure that attracts water
- Better blood volume expanders than isotonic crystalloids, 50 - 80% of the infused volume remains in the intravascular space
- Colloid types
 - Naturally occurring
 - Synthetic

Colloid Indications

- Crystalloids not effectively improving or maintaining blood volume restoration
- Administered when the total protein or albumin are decreased below 3.5 g/dL (35 g/L) or 1.5 g/dL (15 g/L) respectively
- To support colloid oncotic pressure when the COP is measured in the low teens
- If edema develops prior to adequate blood volume restoration
- Capillary permeability problems or capillary leak syndrome.
- Clotting factor replacement (Plasma)
Physical Properties of Isotonic Crystalloids and HES

<table>
<thead>
<tr>
<th>Isotonic crystalloid</th>
<th>Hesaplast 6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average MW - kD</td>
<td>0</td>
</tr>
<tr>
<td>Number Av MW - kD</td>
<td>0</td>
</tr>
<tr>
<td>Osmolality - mOsm/L</td>
<td>250-308</td>
</tr>
<tr>
<td>CPP - mmHg</td>
<td>0</td>
</tr>
<tr>
<td>Maximum volume expand - %</td>
<td>20-25</td>
</tr>
<tr>
<td>Duration of volume expand - hrs</td>
<td>1.4</td>
</tr>
<tr>
<td>Plasma half-life - hrs</td>
<td>0.5</td>
</tr>
</tbody>
</table>

General Concerns

- Calculation of fluid volume are based on subjective data, potential inaccuracies occur. Necessary to reassess the patient often.
- The patient may require more or less of the original calculated fluid volume.
- You are looking for a resolution in the signs that indicated that the patient needed fluids.
- It is necessary to reassess the patient’s condition frequently (i.e. about every 10 - 15 minutes) during large or rapid volume fluid administration.
- Colloids and crystalloids can negatively affect coagulation factors.
- HES solutions impairs coagulation.
- Decreasing von Willebrand factor and factor VIII up to 80%
- Platelet function is also inhibited.

Anticholinergics - Atropine & Glycopyrrolate

- **Action**
 - Parasympatholytic
 - Blocks muscarinic stimulatory effects
 - Salivation, lacrimation, vomiting diarrhea, miosis and bradycardia

- **Indications**
 - Treat vagally mediated bradycardia
 - Treat organophosphate carbamate toxicity
 - Pre-anesthetic medication

- **Atropine vs Glycopyrolate**
 - Longer duration of action
 - Does not cross the placenta or blood-brain barrier

- **Administration**
 - IM, IV
Sympathomimetics

- **Indications**
 - When patient is unresponsive to vigorous fluid therapy
 - When arterial blood pressure (BP), vasomotor tone, and tissue perfusion have not returned to acceptable levels
 - Support myocardial contractility
- **Examples**: Dopamine, Dobutamine, Epinephrine, Norepinephrine

Components of O₂ Delivery

- MAP
- SVR
- SV
- Preload
- Contractility
- Afterload
- DO
- HR
- Hgb
- O₂ Context
- PaO₂
- DO₂

Dopamine

- **Action**
 - Dose dependent effects
 - Dopaminergic
 - Beta 1
 - Alpha
- **Administration**
 - Given as CRI – dilute D5W or 0.9% NaCl
 - Starting in midrange dose, titrate (0.5 – 3µg/kg/min) to effect
Dobutamine

- **Action**
 - Primarily beta 1
 - Increase contractility
- **Administration**
 - Given as CRI – dilute D5W or 0.9% NaCl
 - Titrate to effect

Epinephrine

- **Action**
 - Alpha 1
 - Vasoconstriction
 - Beta 1
 - Increase heart rate
 - Beta 2
 - Dilates bronchioles
- **Administration**
 - Bolus or CRI
 - Bolus in CPR

Norepinephrine

- **Action**
 - Alpha 1
 - Beta 1
- **Administration**
 - Given as CRI – dilute D5W or 0.9% NaCl
 - Titrate to effect
Smooth Muscle Vasoconstrictor - Vasopressin

- **Action**
 - Vasopressin acts as a direct peripheral smooth muscle vasoconstrictor

- **Uses**
 - CPR - alternative to epinephrine
 - Septic shock

Vasodilators

- **Venodilators**
 - Expands vascular capacity by dilating veins, which reduces preload and venous pressure.
 - Reduce congestion but not improve cardiac output
 - Example: Nitroglycerin

- **Arterial vasodilators**
 - Decrease systemic vascular resistance, which reduces afterload and improves cardiac output
 - Decreases the work of the heart
 - Example: Clevidipine

Venodilator - Nitroglycerin

- **Administration**
 - Applied transdermally, usually on the pinna of the ear or some other hairless spot
 - Dose measured in inches by application of a strip of ointment to a measuring paper
 - Gloves should be worn when applying the ointment
 - Should not be touch application site with bare hands
 - Application site should be rotated.
Arterial Vasodilator - Clevidipine

- **Action**
 - Dihydropyridine calcium channel blocker
 - And is a smooth muscle vasodilator

- **Uses**
 - Goal: reduce blood pressure
 - Treat transient heart failure
 - Severe hypertenion

- **Administration**
 - Aseptic technique used when handling this medication
 - Not diluted
 - Dedicated IV line
 - Should be used within 12 hours

- **Administration**
 - Titrated to effect by doubling the dose every 90 seconds.
 - As the blood pressure approaches goal, the infusion rate should be increased in smaller increments and titrated less frequently
 - Primary concern is hypotension
 - Heart rate and blood pressure should be measured continuously
 - Assess perfusion parameters until the patient is stable
 - If hypotension, the drug is reduced or turned off; effects will dissipate within a few minutes.

General Concerns - Vasoactive Drugs

- Most if not all drugs are titrated to effect
- **Monitor**
 - Direct BP monitoring is desirable but indirect methods are also acceptable
 - Regardless, it is recommended that BP is monitored
 - Perfusion parameters
 - Mentation, mucous membrane color, capillary refill time, heart rate, and pulse quality
 - Sympathomimetics should not be a substitute for adequate volume restoration
Antiarrhythmic – Lidocaine (Class 1B)

- **Action**
 - Sodium channel blocker, blocks fast sodium channels responsible for rapid depolarization
- **Indications**
 - Used to treat ventricular arrhythmias if cardiovascularylly unstable
- **Administration**
 - Initial bolus (undiluted), if responsive then CRI
 - **CRI**
 - Diluted in either D5W or 0.9% NaCl compatible with LRS
 - Usually titrated to effect
 - Titrated in 5 µg/kg/min increments every 10 to 15 min until:
 - Desired effect is seen
 - Maximum dose has been reached
 - Adverse signs are seen

Potential adverse effect:
- Nausea
- Vomiting
- Tremors
- Seizures
- Hypotension
- Bradycardia

General
- Cats more sensitive than dogs
 - Usual in much lower doses
 - May exhibit central nervous system signs

Weaning
- Slow or stop infusion, notify clinician

Diuretic - Furosemide

- **Action**
 - Loop diuretic, meaning it acts primarily in the ascending loop of Henle
 - Natriuretic
 - Renal vasodilator
- **Administration – Anuria / Oliguria**
 - Used in high doses for anuria
 - If no effect another diuretic or combination of diuretics
 - Used in low doses for oliguria
 - Given as an IV bolus or CRI
Diuretic - Furosemide

▪ Action
 ▪ In heart failure decreases blood volume and reduces capillary pressure
▪ Administration – Heart Failure
 ▪ IV bolus, IM, CRI
 ▪ Administration by IV bolus is not often done due to its effect on urine output
 ▪ CRI – loading dose first
 ▪ Potential adverse effects
 ▪ Excessive diuresis and dehydration,
 ▪ Hypokalemia
 ▪ Hypotension,
 ▪ Hyperkalemia, hypernatremia, metabolic alkalosis
 ▪ Vomiting and diarrhea
 ▪ Potentially potentiating nephrotoxic effects of action drugs

Mannitol

▪ Actions
 ▪ Osmotic diuretic
 ▪ Free radical scavenger
 ▪ Rheologic properties
▪ Indications
 ▪ Increased intracranial pressure, cerebral edema
 ▪ Cushing’s triad
 ▪ Deterioration level of consciousness
 ▪ Changes in resting pupil size and/or loss of pupillary light response
 ▪ Acute kidney injury
 ▪ Acute / oliguria

▪ Administration
 ▪ May be given as an intermittent bolus or as a CRI. 20% and 25% mannitol
 ▪ May be diluted with D5W for peripheral vein
 ▪ Use a 18 – micron Hemo-Nate filter
▪ General
 ▪ Response may be seen within 10 minutes, maximal effects are noted at 20 – 40 minutes
 ▪ Mannitol may be continued in patients with volume overload and intracranial hemorrhage
 ▪ Can be piggybacked with other crystalloids
 ▪ May crystallize when exposed to low temperatures; solutions less than 15% are less likely to crystallize
Regular Crystalline Insulin

Action
- Promotes entry of glucose and potassium into the cell
- Inhibits the release of glucagon (prevents gluconeogenesis / glycogenolysis)
- Inhibits ketone production

Indications
- Treatment of hyperglycemia secondary to DKA
- Treatment option for hyperkalemia

Regular Crystalline Insulin - DKA

Insulin Administration
- **Intramuscular technique**
 - Insulin is administered every 2 hours based upon the blood glucose level while adjusting the dose up or down depending on the rate of declining glucose levels.
 - As blood glucose approaches 250 mg/dL, the q2 hour IM insulin dose can be changed to the subcutaneous route and administered every four to six hours.
 - When the patient is eating and drinking, no longer ketotic and is not vomiting the regular insulin may be switched to a long-acting form.

Regular Crystalline Insulin - DKA

Insulin Administration
- **CRI technique**
 - With the regular insulin CRI, the regular insulin dose is diluted in 250 mL of 0.9 % saline.
 - Insulin binds to glass and plastic, so the first 50 mL of the infusion should be discarded.
 - Insulin infusion is piggybacked on to the primary fluid line and administered with a fluid infusion pump.
 - Insulin rate is adjusted according to a dosing table.
 - The goal is essentially the same as the IM technique.
Regular Crystalline Insulin - Hyperkalemia

- **Insulin Administration**
 - Insulin is given with dextrose to minimize the risk of the patient becoming hypoglycemic.

- **General Concerns**
 - Regular insulin is considered a fast-acting insulin with a duration of 1 – 4 hours.
 - Blood glucose is monitored at the appropriate frequency.

- **Potential for adverse effects**
 - Signs seen related to overdose, at risk for hypoglycemia:
 - Weakness
 - Ataxia
 - Seizures
 - Cerebral edema secondary to rapid glucose reduction (> 75 mg/dL/hr)

Regular Crystalline Insulin

- **General Concerns**
 - Regular insulin is considered a fast-acting insulin with a duration of 1 – 4 hours.
 - Blood glucose is monitored at the appropriate frequency.

- **Potential for adverse effects**
 - Signs seen related to overdose, at risk for hypoglycemia:
 - Weakness
 - Ataxia
 - Seizures
 - Cerebral edema secondary to rapid glucose reduction (> 75 mg/dL/hr)

Prokinetic - Metoclopramide

- **Action**
 - Antiemetic action due to its antagonist activity at Dopamine D₂ receptors in the chemoreceptor trigger zone.
 - Mixed serotonin 5-HT3 receptor antagonist/5-HT4 receptor agonist.

- **Indication**
 - Enhance gastrointestinal motility and promote gastric emptying.

- **Administration**
 - Can be given IV, subcutaneously, and orally.
 - CRI
 - Dilute the drug to a concentration of 1 mg/mL in 0.9% saline.
 - Dose is divided over 24 hrs.
Prokinetic - Metoclopramide

- **Contraindications**
 - Contraindicated in cases of gastric outflow or gastrointestinal obstruction due to foreign body or intussusception

- **Potential adverse effects**
 - Increase in seizure activity in epileptics
 - Sedation
 - Hyperactivity
 - Changes in behavior
 - Diarrhea
 - Abdominal pain

Serotonin 5HT₃ Antagonist - Ondansetron

- **Indications**
 - Antiemetic and nausea

- **Administration**
 - Administered intravenously over 2 to 5 mins but no less than 30 seconds
 - Compatibilities: PlasmaPlex A, 0.9% NaCl, D₅W
 - Incompatibilities: Ampicillin, Timentin, Faneomycin, and Enrofloxacin

- **Potential adverse effect (Rare People)**
 - Hypotension, tachycardia, rash, neurologic signs and hypokalemia

Protein pump inhibitor - Pantoprazole

- **Indication**
 - Acid reducer – GI protectant

- **Administration**
 - Standard dilution
 - Administered over 3 – 5 minutes
 - Dilute for CRI: dilute to 0.4 mg/mL in 0.9% NaCl
 - Over 30 minutes
 - Compatibilities: Lactated Ringer's solution and D₅W
 - Incompatibilities: Midazolam, magnesium sulfate and zinc containing solutions

- **Adverse effects reported in people**
 - Headache, diarrhea, constipation and abdominal pain
Summary

- Medication administration is not a benign procedure. Medication administration requires
 - Forethought
 - Attention to detail
 - Vigilance