Steroid Use in Veterinary Emergency and Critical Care

Karl Alon, RVT
ECC/ICU Technician VCA Veterinary Specialists of the Valley

Types of Steroids

- Corticosteroids → glucocorticoids
- Mineralocorticoids
- Anabolic-androgenic steroids (Anabolic)

Glucocorticosteroids

- Produced in the cortex of adrenal glands
- Cortisol (hydrocortisone) most common endogenous glucocorticoid
 - Catabolic steroid
 - Breakdown proteins
- Exogenous glucocorticoids given for disease
 - More potent than cortisol (Prednisone, Dexamethasone, etc)
- 10% of circulating cortisol free
 - Remaining bound to plasma proteins
 - Corticosteroid-binding globulin (transcortin)
- All body cells contain glucocorticoid receptors
 - Massive physiologic response
Glucocorticoid Effects on Metabolism

- Stimulates gluconeogenesis → liver
 - Lipids
 - Amino acids
- Stimulates amino acid production
 - Extrahepatic tissue
 - Substrates for gluconeogenesis
- Inhibits glucose uptake → muscle and adipose tissue
- Promotes glucose conservation
- Promotes fat → adipose tissue
 - Lipolysis → fatty acids for energy production
 - Glycerol released → substrate gluconeogenesis

Glucocorticoid Effects on Inflammation

- Potent anti-inflammatory
- Glucocorticoids reduce expression of
 - Cytokines
 - Chemokines
 - Adhesion molecules
 - Other inflammatory proteins
 - Prevent recruitment of inflammatory cells to sites of inflammation
- Glucocorticoids promote cell proptosis
 - Inflammatory cells
- Bind glucocorticoid receptor (GR)
 - GR up-regulates expression anti-inflammatory proteins
 - Transactivation
 - Represses expression of pro-inflammatory cytokines
 - Transrepression

Glucocorticoid Effects on Immunity

- Glucocorticoids suppress the immune system
 - Retard healing
- Suppress cells that promote immune response
 - Mediators (cytokines)
 - Proteins (adhesion proteins)
- Suppress cell-mediated immunity
 - Inhibit genes code for cytokines
 - Interleukin 1-6, 8-10
 - IFNg
- Suppress humoral immunity
 - B cells → smaller amounts IL-2 and IL-2 receptors
 - Diminish B cell clone expansion
 - Antibody synthesis
 - Fewer IL-2 → fewer T-lymphocytes cells active
- Glucocorticoid-induced proptosis
Mineralocorticoids

- Produced in the cortex of adrenal glands
 - Just like glucocorticoids!
- Aldosterone is primary endogenous mineralocorticoid
- Glucocorticoids circulate approximately 100x more than mineralocorticoids
- Used in the maintenance of minerals in the body
 - Sodium [Na+]
 - Passive potassium [K+] secretion
- Due to affect on minerals \Rightarrow affects body fluid content
 - Retention of sodium \Rightarrow retention of fluids

The Androgen Group- Anabolic Steroids

- Sex hormones
 - Testosterone
 - Estrogen
 - Progesterone
- Anabolic steroid
 - Build up of proteins
- Often used in reproduction
 - Small and large animal
- Can be used to treat incontinence in spayed females
- Not used in Emergency and Critical Care Medicine

When to use Glucocorticoids

- Prescribed often for chronic disease process
 - Asthma, IBD, etc
- Used in acute onset of severe inflammation
 - Anaphylaxis \Rightarrow sometimes!
 - Asthma
 - Immune-mediated disease process
 - Brachycephalic Syndrome
 - Used in severe lack of glucocorticoids
 - Addison’s disease
- Used in refractory septic cases
 - CIRCI patients
Glucocorticoids in Anaphylaxis

- **Anaphylaxis** → severe and profound Type 1 hypersensitivity reaction
 - **Symptoms**
 - Tachycardia, hypotension, and bronchospasm
 - **Mechanism**
 - Massive mediator release
- **Treatment of choice typically Epinephrine**
 - **Alpha 1 and 2 adrenergic receptors** → increase blood pressure and coronary perfusion
 - **Beta 1 adrenergic receptors** → positive inotropic and chronotropic cardiac effects
 - **Beta 2 adrenergic receptors** → reduce release of pro-inflammatory mediators
- **Crystalloids given IV**
 - **Maintain intravascular fluid volume**
- **Antihistamine (Diphenhydramine)**
 - **Decrease ongoing histamine release**
- **Glucocorticoids once cardiovascular collapse reversed**
 - **Help to control ongoing anaphylaxis**
 - **Persistent mediator release**

Feline Asthma

- **Typically an allergic response**
 - **Altered immunosensitivity of the respiratory tract**
 - **Hyperresponsiveness**
 - **Coughing**
 - **Wheezing**
 - **Expiratory dyspnea**
 - **Diagnosed via physical exam and clinical signs/symptoms**
- **Steroids given to treat the inflammation and hyperresponsive immune system**
 - **If tolerated well → steroids for the rest of the cat’s life**

Immune-Mediated Disease

- **Steroids strong immunosuppressive drugs**
- **Immune-Mediated disease → immune system out of control**
 - **Give immunosuppressive dose of steroids → prevents immune system from wreaking havoc**
- **Hundreds of immune-mediated diseases**
 - **Only a few seen through ECC**
 - **IMHA**
 - **ITP**
Immune-Mediated Hemolytic Anemia

-
- IMMUNE-MEDIATED HEMOLYTIC ANEMIA (IMHA)
 - Body's own immune system attacking and destroying red blood cells
 - Destroyed red blood cells release hemoglobin → cause bilirubin release → icterus

 - Physical Exam
 - Tachycardia
 - Tachypnea
 - Pale/Icteric mucous membrane
 - Blood work
 - Decreased PCV/TP
 - Decreased platelet count
 - Decreased PCV/Tp
 - Possible coagulopathy → consumption of clotting factors

IMHA Treatment

- High majority of patients require pRBC transfusion
 - Often need multiple during hospitalization stay
- Oxygen therapy if anemia severe enough
 - No RBCs → no hemoglobin → no oxygen carrying capacity
- Crystalloids to help maintain intravascular volume
- Glucocorticoid steroids started → immunosuppressive dose
 - Commonly start short acting steroid → move to longer acting when patient stabilized
 - Often adjunct with immunosuppressive drugs (i.e. Cyclosporine, Mycophenolate)

Immune-Mediated Thrombocytopenia

- IMMUNE-MEDIATED THROMBOCYTOPENIA (ITP)
 - Immune system attacks and destroys the body's platelets
 - Patients at risk for spontaneous bleeding < 50k platelets

 - Physical Exam
 - Tachycardia
 - Tachypnea
 - Pale mucous membrane
 - Blood work
 - Chemistry may be normal
 - CBC
 - Decreased platelet count
 - little to no clumping
 - Confirm with differential
ITP Treatment

- Transfusions
 - pRBC transfusion
 - Often multiple transfusions required if patient continues bleeding
 - Platelet rich plasma transfusion
 - May bring up platelet count
 - Not always readily available
 - Whole blood transfusion
 - Contains both RBCs for anemia and platelets/clotting factors

- Oxygen therapy
 - Anemia → no oxygen carrying capacity
 - Immunosuppressive dose glucocorticoids
 - Suggestive the immune system to prevent further destruction of platelets
 - Adjunct with immunosuppressive drugs (i.e. Cyclosporine, Mycophenolate)

- Vincristine
 - Chemotherapy drug
 - Stimulation platelet release from bone marrow

Brachycephalic Syndrome

- Brachycephalic Syndrome can affect any brachycephalic breed
 - Pugs, English Bulldog, Pekingese, etc
- Dogs cool themselves off much via panting
- Brachycephalic breeds cannot pant well due to facial structure
- Brachycephalic syndrome occurs
 - Pet gets stressed or hot → starts panting but not enough to relax or cool itself off → pet gets MORE stressed and/or hot → pet pants more, cannot cool → cycle continues
 - Patients often develop laryngeal and pharyngeal edema due to excessive panting
 - Patients can overheat rapidly → temperatures > 105F easily

Brachycephalic Syndrome Treatment

- Oxygen support!
- If rectal temperature > 106.5F (may change with different literature) → actively cool with water and blankets → cool until rectal temperature reaches 103.5F → stop active cooling → monitor patient doesn’t become hypothermic.
- Patient may need sedation to break cycle!
 - Butorphanol often works very well
 - Acepromazine can be used as well
- Depending on severity intubation may be required → anesthesia necessary
 - Take over patient’s airway
- Low dose of short acting glucocorticoid helps reduce pharyngeal and laryngeal swelling
Glucocorticoids in Addisonian Crisis

- Addison’s Disease
 - Body doesn’t make enough glucocorticoid or mineralocorticoid steroids
 - Typically cortisol and aldosterone

- Patient’s present collapsed
 - Typically severely dehydrated
 - Lack of mineralocorticoids → lack of appropriate fluid retention
 - Often with GI disease (diarrhea)
 - Blood work for typical Addison’s
 - Elevated K+, decreased Na+
 - Hypoglycemia
 - Resting cortisol warranted

Glucocorticoids in Addisonian Crisis (con’t)

- Often administration of fast, short acting steroid
 - Dexamethasone Sodium-Phosphate often chosen
 - Treats the Glucocorticoid!!
 - Most common mineralocorticoid → desoxycorticosterone pivalate
 - Typically given after emergency situation is resolved

- Crystalloids given IV
 - Maintain fluid balance → replace losses → treat dehydration
 - Can give dextrose → hypoglycemia treated with glucocorticoid
 - Electrolytes treated with glucocorticoid

Glucocorticoids in CIRCI

- What is CIRCI??
 - Critical Illness-Related Corticosteroid Insufficiency

- As the name suggests → critically ill patients!
- Severe stress response → adrenals unable to keep up with need
- Cortisol levels lower than needed
- Decreased albumin and corticosteroid-binding globulin (CBG) during severe illness
 - Albumin and CBG bind cortisol
- Due to critical illness
 - Decreased GR sensitivity
 - Decreased tissue response to corticosteroids
Glucocorticoids in CIRCI (con’t)

• Suspect in patients with refractory hypotension
 • Best known guideline for diagnosing CIRCI
 • ACTH stim test \(\rightarrow\) takes time to receive results
• Patients in septic shock
• No improvement with fluids and pressors
• New studies moving AWAY from this diagnosis
 • Still, keep in mind, for now

Treatment of CIRCI

• Recommended treatment
 • Physiologic dose of steroids
 • Hydrocortisone typically chosen \(\rightarrow\) most closely resembles cortisol
• Again...only if refractory to vasopressors and fluids
 • If blood pressure responsive to fluids \(\rightarrow\) NO steroids!

When NOT to use Glucocorticoids

• Trauma \(\rightarrow\) Shock
 • Shock occurs \(\rightarrow\) decreased oxygen delivery to tissues
 • Cardiogenic
 • Septic
 • Distributive
 • Hypovolemic
Glucocorticoids in Thoracic Trauma

• Contraindicated → fallen out of practice and standard of care medicine
 • Proven only to be effective if given directly before a trauma
 • Not helpful!
• Due to effects on immune system → often makes healing and treatment of trauma worse
• Treat the trauma → wounds → fractures → internal injuries

Glucocorticoids in Abdominal Trauma

• Contraindicated → fallen out of practice and standard of care medicine
 • Proven only to be effective if given directly before a trauma
 • Not helpful!
• Due to effects on immune system → often makes healing and treatment of trauma worse
• Treat the trauma → wounds → fractures → internal injuries

Glucocorticoids in TBI

• TBI → Traumatic Brain Injury
 • Steroids given to reduce brain swelling
• CRASH study
 • Patients given steroids → increased mortality
• Pathophysiology why?
 • Still uncertain → no evidence of severe infection or GI bleed
 • Hyperglycemia seen → poor prognostic indicator in TBI
 • Concern for unknown side effects of steroids on neuro status
Presenting to ER for Glucocorticoid Use

- Owners may make mistakes with the prescribed medication
 - Due to the numerous side effects of glucocorticoids → some may be emergent!
- Very important clients be educated on the medications
 - Example: Never stop giving glucocorticoids without a doctor’s permission
 - Taper dose → prevents steroid-induced Addisonian crisis
 - Giving too much of a dose → equally bad
 - Hepatopathy
 - Cushion symptoms

Glucocorticoid Induced Diabetes

- Glucocorticoids cause hyperglycemia
 - Increased glycolysis
 - Increased gluconeogenesis
- Glucocorticoids suspected in metabolic changes
 - Pancreatic beta cell dysfunction (sensitivity to glucose and ability to release insulin)
 - Insulin resistance in other tissue
 - Glucose unable to enter the cell and be utilized for energy

Common Side Effects of Glucocorticoids

- Some mentioned earlier
 - Retards the body’s immune system
 - Reduces ability to heal
 - Increases risk of GI ulcers
 - Stomach and duodenum high risk
 - Increases thirst (Polydipsia)
 - Increases urination (Polyuria)
 - Increases hunger (Polyphagia)
 - Lethargy