BRAINS OVER BRAWN: THE USE OF STEROIDS IN VETERINARY EMERGENCY AND CRITICAL CARE MEDICINE

KARL ALON, RVT
ECC/ICU TECHNICIAN VCA VETERINARY SPECIALISTS OF THE VALLEY

TYPES OF STEROIDS
• Corticosteroids ➔ glucocorticoids
• Mineralocorticoids
• Anabolic androgenic steroids (Anabolic)

BRIEF ADRENAL GLAND ANATOMY & PHYSIOLOGY
• Adrenal glands made of two main layers
 • Outer layer of the adrenal gland ➔ adrenal cortex
 • Cortex made up of 3 layers:
 • Zona glomerulosa (outer zone)
 • Production of mineralocorticoids
 • Zona fasciculata (middle zone)
 • Production of glucocorticoids
 • Zona reticularis (inner zone)
 • Production of gonadocorticoids
 • Inner portion of the adrenal gland ➔ adrenal medulla
 • Production of catecholamines

Steroid Types
• Corticosteroid
• Testosterone
• Aldosterone
• Progesterone
GLUCOCORTICOIDS

• Cortisol (hydrocortisone) most common endogenous glucocorticoid
 • Catabolic steroid
 • Breakdown proteins
• Exogenous glucocorticoids given for disease
 • More potent than cortisol (Prednisone, Dexamethasone, etc)
• 10% of circulating cortisol free
 • Remaining bound to plasma proteins
 • Corticosteroid-binding globulin (transcortin)
• All body cells contain glucocorticoid receptors
 • Profound systemic response

GLUCOCORTICOID EFFECTS ON METABOLISM

• Stimulates gluconeogenesis → liver
 • Lipids
 • Amino acids
• Stimulates amino acid production
 • Extrahepatic tissue
 • Substrates for gluconeogenesis
• Inhibits glucose uptake → muscle and adipose tissue
 • Promotes glucose conservation
• Promotes fat → adipose tissue
 • Lipolysis → fatty acids for energy production
 • Glycerol released → substrate gluconeogenesis

GLUCOCORTICOID EFFECTS ON INFLAMMATION

• Potent anti-inflammatory
 • Glucocorticoids reduce expression of
 • Cytokines
 • Chemokines
 • Adhesion molecules
 • Other inflammatory proteins
 • Prevent recruitment of inflammatory cells to sites of inflammation
• Bind glucocorticoid receptor (GR)
 • GR up-regulates expression anti-inflammatory proteins
 • Represses expression of pro-inflammatory cytokines
GLUCOCORTICOID EFFECTS ON IMMUNITY

- Glucocorticoids impede healing
 - Inhibit fibroblasts proliferation
- Suppress cells that promote immune response
 - Mediators (cytokines)
 - Proteins (adhesion proteins)
- Suppress immunity
 - Decrease circulating T-lymphocytes, monocytes, and eosinophils
 - Inhibit neutrophil, macrophage, and monocyte migration
 - Inhibit phagocytosis and chemotaxis
 - Decrease numbers of mast cells and histamine synthesis

MINERALOCORTICOIDS

- Produced in the cortex of adrenal glands
 - Just like glucocorticoids!
- Aldosterone is primary endogenous mineralocorticoid
- Glucocorticoids circulate approximately 100x more than mineralocorticoids
- Used in the maintenance of electrolytes in the body
 - Sodium (Na+) retention
 - Retention of sodium → retention of fluids
 - Passive potassium (K+) excretion

THE ANDROGEN GROUP-ANABOLIC STEROIDS

- Sex hormones
 - Testosterone
 - Estrogen
 - Progesterone
- Anabolic steroid
 - Build up of proteins
 - Often used in reproduction
 - Small and large animal
 - Can be used to treat incontinence in spayed females
 - Not used in Emergency and Critical Care Medicine
WHEN TO USE GLUCOCORTICOIDS

- Most commonly used for chronic disease processes
 - Asthma, chronic bronchitis, collapsing trachea
 - Immune Mediated processes
 - Addison's disease
 - Inflammatory bowel disease
 - Lymphoma
 - Allergies

- Rarely used in emergency and critical care setting for
 - Anaphylaxis → sometimes!
 - Brachycephalic Obstructive Airway Syndrome
 - Acute presentations of chronic diseases
 - CIRCI patients, refractory hypotension in septic shock

COMMON SIDE EFFECTS OF GLUCOCORTICOIDS

- Suppresses the immune system
 - Reduces ability to heal
 - Increases susceptibility to infection

- Increases risk of GI ulcers
 - Stomach and duodenum high risk

- Increases thirst (Polydipsia)
- Increases urination (Polyuria)
- Increases hunger (Polyphagia)
- Lethargy

WHEN NOT TO USE GLUCOCORTICOIDS

- Shock
- Sepsis
- Trauma
- Brain Injury
- CRASH study
- Rattlesnake envenomations
- Pancreatitis
- Diabetes
- Cardiac disease
- Pneumonia
- Heat stroke
- CPR
- Smoke inhalation
GLUCOCORTICOIDS IN ANAPHYLAXIS

- Anaphylaxis → Type 1 hypersensitivity reaction
 - Severe, potentially lethal reactions → tremendous histamine and leukotriene release
 - Mediators target blood vessels and smooth muscle
 - Profound vasodilation
 - Airway narrowing

ANAPHYLAXIS

- Treatment of choice typically Epinephrine
 - Increases cardiac output and vascular tone
- Crystalloids given IV
 - Maintain intravascular fluid volume
- Antihistamine (Diphenhydramine)
 - Decreases ongoing histamine release
- Glucocorticoids once cardiovascular collapse reversed
 - Glucocorticoids not extremely helpful during the crisis
 - Help to control ongoing anaphylaxis
 - Persistent mediator release (late phase reaction)

BRACHYCEPHALIC OBSTRUCTIVE AIRWAY SYNDROME

- Brachycephalic obstructive airway syndrome
 - Stenotic nares
 - Excessive pharyngeal tissues
 - Elongated soft palate
 - Tracheal hypoplasia
- Progress to
 - Laryngeal sacculae eversion
 - Laryngeal collapse
- Acute decompensation of a chronic condition characterized by
 - Hyperthermia
 - Upper airway obstruction
 - Accompanied by laryngeal and pharyngeal edema
BRACHYCEPHALIC OBSTRUCTIVE AIRWAY SYNDROME TREATMENT

- Oxygen support!
- Sedation
 - Butorphanol, acepromazine work well
- If rectal temperature > 106.5°F → actively cool
 - Cool until rectal temperature reaches 103.5°F → stop active cooling
- Depending on severity → intubation may be required → anesthesia necessary
- Anti-inflammatory dose of rapid acting glucocorticoid → helps reduce pharyngeal and laryngeal swelling

FELINE ALLERGIC AIRWAY DISEASE (ASTHMA)

- Hyperreactive airway response
 - Altered immunosensitivity of the respiratory tract
 - Diagnosed via history, physical exam, radiographs, signs/symptoms
- Oxygen support
- Anti-inflammatory dose of rapid acting glucocorticoid steroid
 - Injectable for crisis, oral or inhaled for chronic use
- Bronchodilators
 - Oral, inhaler, or injectable

IMMUNE-MEDIATED DISEASE

- Immune-Mediated disease → immune system out of control
 - Give immunosuppressive dose of steroids → prevents immune system from wreaking havoc
- Hundreds of immune-mediated diseases
 - Only a few seen through ECC
 - IMHA
 - ITP
IMMUNE-MEDIATED HEMOLYTIC ANEMIA

• Immune-mediated hemolytic anemia (IMHA)
 • Body's own immune system attacking and destroying red blood cells
 • Majority of patients require pRBC transfusion
 • Often need multiple during hospitalization
 • Oxygen therapy if anemia severe enough
 • No RBCs → no hemoglobin → no oxygen carrying capacity
 • Crystalloids to help maintain intravascular volume

IMMUNE-MEDIATED HEMOLYTIC ANEMIA

• Glucocorticoid steroids started → immunosuppressive dose
 • Commonly start injectable rapid acting steroid → move to oral when patient stabilized
 • Other immunosuppressants (i.e. Cyclosporine, Mycophenolate)
 • Antithrombotic therapy (i.e. Aspirin, Clopidogrel, Low molecular weight heparin)

IMMUNE-MEDIATED THROMBOCYTOPENIA

• Immune-Mediated Thrombocytopenia (ITP)
 • Immune system attacks and destroys the body's platelets
 • Patients at risk for spontaneous bleeding < 50k platelets
 • Transfusions
 • pRBC transfusion
 • For anemia, not thrombocytopenia
 • Platelet transfusions
 • Not readily available
 • Controversial
 • Destroyed by body
 • Questionable efficacy
 • Oxygen therapy
 • Anemia → no oxygen carrying capacity
IMMUNE-MEDIATED THROMBOCYTOPENIA

• Immunosuppressive dose injectable rapid acting glucocorticoids
 • Suppressive the immune system to prevent further destruction of platelets
 • Adjunct with immunosuppressive drugs (i.e. Cyclosporine, Mycophenolate)
• Vincristine
 • Chemotherapy drug
 • Stimulates platelet release from bone marrow

GLUCOCORTICOIDS IN ADDISONIAN CRISIS

• Addison’s Disease
 • Body doesn’t make enough glucocorticoid or mineralocorticoid steroids
 • Present cardiovascular collapse
 • Severe dehydration, vomiting, diarrhea, inappetence
 • Blood work for typical Addison’s
 • Elevated K+, decreased Na+
 • Often hypoglycemia
 • Atypical Addison’s
 • Similar presentation, normal electrolytes
 • Only deficient in glucocorticoid steroids

GLUCOCORTICOIDS IN ADDISONIAN CRISIS

• Often administration of fast, rapid acting steroid
 • Desamethasone Sodium-Phosphate often chosen
 • Warm after ACTH test needed for diagnosis
 • Desamethasone lacks mineralocorticoid activity, only replaces lacking glucocorticoids
 • Desoxycorticosterone pivolate (DOCP)
 • Typically given after emergency situation is resolved and diagnosis of typical addisonian
 • Replaces mineralocorticoids
 • Corrects electrolyte abnormalities
 • Given every 20-30 days based on response
• Crystalloids given IV
 • Maintain fluid balance ➔ replace losses ➔ treat dehydration
 • Can give dextrose ➔ hypoglycemia, if present
CRITICAL ILLNESS-RELATED CORTICOSTEROID INSUFFICIENCY

- What is CIRCI??
 - Critical Illness-Related Corticosteroid Insufficiency
 - Most commonly seen in patients with septic shock
 - Hypotension refractory to fluid therapy
- Severe stress response
 - Adrenal gland unable to keep up with need
 - Cells have a more impaired response to cortisol
 - Underlying pathophysiology of CIRCI unknown → likely a complex combination of altered hypothalamic, pituitary, adrenal, hormonal, enzymatic, and receptor function

CRITICAL ILLNESS-RELATED CORTICOSTEROID INSUFFICIENCY

- Well described in humans
 - Low doses of hydrocortisone improve blood pressure
 - Little clinical evidence in veterinary medicine
 - Guidelines for diagnosis are not well established

TREATMENT OF CRITICAL ILLNESS-RELATED CORTICOSTEROID INSUFFICIENCY

- Recommended treatment
 - Physiologic dose of steroids
 - Hydrocortisone typically chosen → most closely resembles cortisol
 - Again…only if refractory to vasopressors and fluids
 - If blood pressure responsive to fluids → NO steroids!
GLUCOCORTICOIDS IN THORACIC AND ABDOMINAL TRAUMA

• Contraindicated → fallen out of practice and standard of care medicine
 • Proven only to be effective if given directly before a trauma
 • Not helpful
• Due to effects on immune system → often makes healing and treatment of trauma worse
• Treat the trauma → wounds → fractures → internal injuries
• Absence of strong evidence of benefit

GLUCOCORTICOIDS IN TBI

• Contraindicated
 • Severe detrimental effects
• TBI → Traumatic Brain Injury
 • Steroids given to reduce brain swelling
• CRASH study
 • Patients given steroids → increased mortality
• Pathophysiology why?
 • Still uncertain → no evidence of severe infection or GI bleed
 • Hyperglycemia seen → poor prognostic indicator in TBI
 • Concern for unknown side effects of steroids on neuro status
• Absence of strong evidence of benefit

GLUCOCORTICOID USE IN CPR

• Contraindicated
 • Little to no benefit associated
• Immunosuppression
• GI ulcers
• Decreased renal perfusion
• Absence of strong evidence of benefit
GLUCOCORTICIDS USE IN LUNG INJURY

- Contraindicated in use for lung injury
 - Pneumonia, aspiration pneumonia, smoke inhalation, etc
- Immunosuppressive ➔ can greatly worsen infection
- Retards healing ➔ makes it extremely difficult for the body to heal
- Absence of strong evidence of benefit

GLUCOCORTICOID USE IN ENVENOMATION

- Contraindicated
- Suppresses the immune system ➔ makes it much harder for body to fight
- Absence of strong evidence of benefit
- Anti-venom only medicine proven to benefit outcome

PRESENTING TO ER FOR GLUCOCORTICOID USE

- Many pets are on glucocorticoid steroids for chronic diseases processes
- Owners may make mistakes with the prescribed medication
 - Due to the numerous side effects of glucocorticoids ➔ some may be emergent!
- Very important clients be educated on the medications
 - Example: Never stop giving glucocorticoids without a doctor’s permission
 - Taper dose ➔ prevents iatrogenic Addisonian crisis from abrupt withdrawal
 - Giving too much of a dose ➔ equally bad
- Hepatopathy
- Cushnoid symptoms
GLUCOCORTICOID INDUCED DIABETES

- Glucocorticoids cause hyperglycemia
 - Increased glycolysis
 - Increased gluconeogenesis
- Glucocorticoids suspected in metabolic changes
 - Pancreatic beta cell dysfunction (sensitivity to glucose and ability to release insulin)
 - Insulin resistance in other tissue
 - Glucose unable to enter the cell and be utilized for energy

CONCLUSION

- Glucocorticoid steroid have a place and time for their use in ECC medicine. However, they are not a cure all! They have pretty tremendous side effects, so they should be utilized with caution and only in circumstances where there is strong evidence that their benefit outweighs the risk.